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The limit states of magnetic relaxation
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It is generally believed that a viscous, non-resistive plasma will eventually decay to a
magnetostatic state, probably possessing contact discontinuities. We prove that even
in the presence of a decaying forcing, the kinetic energy of the system tends to zero,
which justifies the belief that the limit state is static. Regarding the magnetic field,
the fact that the magnetic energy remains bounded proves the existence of weak
sequential limits of the field as the time goes to infinity, but this does not imply that
the magnetic field tends to a single state: we present an example where there is no
limit, even in a weak sense. One additional condition upon the velocity, however, is
enough to guarantee existence of a single limit magnetic configuration.

1. Introduction
In a classical paper Moffatt (1985) described the evolution of an infinitely

conducting, viscous, incompressible fluid according to the laws of magnetohydro-
dynamics (MHD):

∂v

∂t
+ v · ∇v = ν�v + J × B − ∇p, (1)

∂ B
∂t

= ∇ × (v × B), (2)

∇ · v = ∇ · B = 0. (3)

Here v represents the fluid velocity, B the magnetic field, J = ∇ × B the current
density, p the kinetic pressure and ν the viscosity. We have normalized the density to
unity for simplicity of notation.

The boundary conditions imposed in Moffatt (1985) are Dirichlet ones: both v and
the normal component of B vanish at the boundary of the smooth domain Ω for all
time. Moffatt then proves the energy identity

d

dt

(
1

2

∫
Ω

v2 + B2 dV

)
= −ν

∫
Ω

|∇v|2 dV, (4)

which means that the total energy decreases monotonically for as long as v is not zero.
The conclusion is that the limit state of the velocity when t → ∞ is zero, and therefore
the field must tend to a magnetostatic state where J × B = ∇p. The topology of the
magnetic field lines is conserved for all time, because the ideal induction equation (2)
implies that field lines are transported by the flow as material points, but in the
limit the topology may change and indeed the field may become discontinuous. This
is a welcome feature, since contact discontinuities in the form of current sheets are
extremely useful in explaining ubiquitous phenomena involving rapid conversion of
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magnetic to kinetic energy: Parker (1994) made this one of the cornerstones of his
theory. On the mathematical side, variants of Moffatt’s setting have been proposed
to prove existence of equilibria for the Euler equations (Nishiyama 2002, 2003).

Moffatt’s paper abounds with well-chosen examples of how the field line
configuration may obstruct the decay to zero of the total energy, and it is a model
of succesful combination of intuitive description with rigorous argument. It does not,
however, prove that the velocity and the magnetic field really tend to magnetostatic
equilibria, or indeed that they tend to anything. The simple decrease of total energy
is not strong enough to guarantee existence of asymptotic states. We will analyse
this subject, and prove that even in the presence of a forcing and with more general
boundary conditions, the kinetic energy does in fact tend to zero, which may be
interpreted as saying that the limit state is stationary. The magnetic field, however, is
more difficult: it becomes arbitrarily close to a certain set of states, at least in a weak
sense; but these limits do not need to be unique, except with an additional condition
upon the velocity. That this condition, although reasonable, does not hold in all cases
is proved with an example where there is no limit of the magnetic field.

In the absence of any forcing, even if decaying, it is more difficult to show any
example of such behaviour, mainly because of the lack of non-trivial analytic solutions
to the MHD equations. Only the simplest instances, such as plane flow and vertical
field, or velocity and field aligned, provide simple solutions and for these the velocity
decays exponentially and therefore satisfies every possible integrability condition.
Thus, we have not strictly refuted the belief that the magnetic field relaxes to a
specific state in an unforced flow. However, since our forcings tend to zero for large
times, we have shown that the smallest of errors in the integration of the momentum
equation may destroy the possible convergence of the magnetic field; hence this
convergence is not robust. In fact, we conjecture that there is no such convergence.

We explain briefly our (standard) notation: Lp(Ω) will denote the space of functions
(or vector functions) such that |f |p is integrable, with the norm

‖f ‖p =

(∫
Ω

|f |p dV

)1/p

,

whereas L∞(Ω) is the space of measurable functions, bounded except perhaps in a
set of null measure, with the maximum norm. Lp((0, ∞), Lq(Ω)) will logically denote
the space of measurable functions g of time taking values in Lq(Ω), such that

‖g‖Lp((0,∞),Lq (Ω)) =

(∫ ∞

0

‖g(t)‖p
q dt

)1/p

< ∞.

Of course a function g(t, x) of time and space variables may always be interpreted
as a function of time, taking values in a space of functions in x. This second
interpretation is often more convenient for simplicity of notation. C∞

c (Ω) is the space
of test functions, i.e. those infinitely differentiable of compact support contained
in Ω .

For all the spaces we will be considering, corresponding to the different boundary
conditions upon the velocity, a Poincaré inequality will hold, i.e. there will exist a
constant C depending only on the domain Ω such that

‖v‖2 � C‖∇v‖2.

This occurs whenever Ω is smooth and bounded, and there exists a seminorm p such
that p never vanishes on non-zero constant functions, whereas for all the functions
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within our space, p(f ) = 0. Examples of such seminorms are

p(v) = sup
∂Ω

|v · n|, (5)

which includes Dirichlet conditions, and

p(v) =

∣∣∣∣
∫

Ω

v dV

∣∣∣∣ , (6)

used for periodic problems. This result is proved in Deny & Lions (1954); see also
Temam (1980, pp. 49–50).

We will assume that there exists a smooth solution (v, B) defined for all time,
satisfying in addition that the magnetic field remains bounded in the L∞-norm.
Neither of these hypotheses is a theorem: there is no proof of the global existence of
smooth solutions to the diffusive MHD equations, much less if we omit the resistivity.
Still, it does not make sense otherwise to study the limit t → ∞. The assumption
‖B‖∞ � M also seems physically reasonable.

2. Asymptotic behaviour of the velocity
The forced non-resistive MHD system may be written as

∂v

∂t
+ v · ∇v = ν�v + B · ∇B − ∇p∗ + f , (7)

∂ B
∂t

+ v · ∇B = B · ∇v, (8)

∇ · v = ∇ · B = 0, (9)

where p∗ = p+(1/2)B2 is the total pressure. We will not demand any specific boundary
conditions, except that the following boundary integrals must vanish:∫

∂Ω

v · ∂v

∂n
dσ =

∫
∂Ω

(B · v)(B · n) dσ

=

∫
∂Ω

v2(v · n) dσ =

∫
∂Ω

B2(v · n) dσ =

∫
∂Ω

p(v · n) dσ = 0. (10)

This holds for example: with Dirichlet (v = 0 at ∂Ω) conditions for the velocity,
for any value of B; when v · n = B · v = (∂v2/∂n) = 0 at ∂Ω; for periodic boundary
conditions; or for several combinations of those. n denotes the normal vector at the
boundary.

In addition we assume that a Poincaré inequality holds. This occurs e.g. when
v · n =0 or when the integral of v in Ω is zero.

Notice that we do not impose any condition on the magnetic field. This is because
it is not really necessary and the traditional one, B · n = 0, occurring in Moffatt
(1985) is not adequate for relaxation problems, where the anchoring of field lines at
the boundary is an important characteristic (Low & Wolfson 1988). With Dirichlet
conditions upon the velocity the value of B · n at ∂Ω remains constant in time.
Concerning the forcing f , we will assume that f ∈ L2((0, ∞), L2(Ω)), i.e. that the
energy of f is integrable in time.

Let us analyse the energy inequality. By multiplying the momentum equation (7)
by v, the induction equation (8) by B, adding and applying the divergence theorem,
we find as usual

1

2

∂

∂t

(
‖v‖2

2 + ‖B‖2
2

)
= −ν‖∇v‖2

2 + ( f , v), (11)
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where

( f , v) =

∫
Ω

f · v dV.

By the inequalities of Cauchy-Schwarz and Young,

|( f , v)| � ‖ f ‖2‖v‖2 � C‖ f ‖2‖∇v‖2 �
ν

2
‖∇v‖2

2 +
C2

2ν
‖ f ‖2

2,

where C denotes the Poincaré constant. Hence

1

2

∂

∂t

(
‖v‖2

2 + ‖B‖2
2

)
�

−ν

2
‖∇v‖2

2 +
C2

2ν
‖ f ‖2

2.

Integrating in time,

1

2

(
‖v(t)‖2

2 + ‖B(t)‖2
2

)
�

1

2

(
‖v(0)‖2

2 + ‖B(0)‖2
2

)
− ν

2

∫ t

0

‖∇v‖2
2 ds +

C2

2ν

∫ t

0

‖ f ‖2
2 ds. (12)

Since we assumed that f ∈ L2((0, ∞), L2(Ω)), the last integral is uniformly bounded
for all t . Therefore ‖v‖2, ‖B‖2 are bounded for all time, and the function ‖∇v‖2

2 is
also integrable in (0, ∞). This implies that ‖∇v‖2 (and a fortiori ‖v‖2) is mostly small
for advanced times, but in principle it may have jumps of arbitrarily large height
provided their durations become rapidly smaller. Indeed, one could suspect that this
may occur, say, if the magnetic energy is converted into kinetic energy in short bursts.
The total energy would decrease, but each of its summands could be unpredictable.
We will prove that this does not occur, and that limt → ∞ ‖v(t)‖2 = 0. Thus the system
tends to become stationary.

The proof follows the lines of an analogous one for the case where Ω is the whole
space, and in the absence of forcing, in Agapito & Schonbek (2006). Our proof is
simpler because of the help of the Poincaré inequality.

Take a fixed r > 0 such that rC2 � ν. We have

d

dt

(
ert‖v(t)‖2

2

)
= rert‖v(t)‖2

2 − νert‖∇v(t)‖2
2 + ert (B · ∇B, v) + ert ( f , v), (13)

since

(v · ∇v, v) =
1

2

∫
Ω

v · ∇v2 dV =
1

2

∫
∂Ω

v2v · n dσ = 0,

and

(∇p∗, v) =

∫
∂Ω

p∗v · n dσ = 0.

By an analogous argument, (B · ∇B, v) = − (B · ∇v, B). Therefore, using Poincaré’s as
well as other standard inequalities,

d

dt

(
ert‖v(t)‖2

2

)
� rC2ert‖∇v(t)‖2

2 − ν‖∇v(t)‖2
2

+ ert‖B(t)‖∞‖B(t)‖2‖∇v(t)‖2 + Cert‖ f (t)‖2‖∇v(t)‖2

� ert‖∇v(t)‖2(‖B‖∞‖B‖2 + C‖ f (t)‖2). (14)
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Since by hypothesis ‖B‖∞ and (a fortiori, or by the energy inequality) ‖B‖2 are
bounded, we find that for some constant k

d

dt

(
ert‖v(t)‖2

2

)
� ert‖∇v(t)‖2(k + C‖ f (t)‖2). (15)

Integrating between s and t , and multiplying by e−rt , we find

‖v(t)‖2
2 � er(s−t)‖v(s)‖2

2 + ke−rt

∫ t

s

erx‖∇v(x)‖2 dx

+ C

∫ t

s

er(x−t)‖ f (x)‖2‖∇v(x)‖2 dx

� er(s−t)‖v(s)‖2
2 + ke−rt

(∫ t

s

e2rx dx

)1/2 (∫ t

s

‖∇v(x)‖2
2 dx

)1/2

+ C

(∫ t

s

‖ f (x)‖2
2 dx

)1/2 (∫ t

s

‖∇v(x)‖2
2 dx

)1/2

. (16)

Therefore, bounding ‖v(s)‖2 by a bound of the total energy A:

‖v(t)‖2
2 � er(s−t)A +

k√
2r

(∫ t

s

‖∇v(x)‖2
2 dx

)1/2

+ C

(∫ ∞

0

‖ f (x)‖2
2 dx

)1/2 (∫ t

s

‖∇v(x)‖2
2 dx

)1/2

. (17)

For any arbitrary constant ε > 0, if we take s0 large enough for

e−rs0 < ε,

∫ ∞

s0

‖∇v(x)‖2
2 dx < ε2,

we find that for any t > 2s0,

‖v(t)‖2
2 �

(
A +

k√
2r

+ Cm

)
ε, (18)

where m is the integral of ‖ f ‖2
2 in (0, ∞). This proves that ‖v‖2 becomes arbitrarily

small for large times. The result is proved.
(Note: the Poincaré inequality may be refined by using instead the

Gagliardo–Nirenberg inequality. For our purposes, this would imply that it is enough
to have

f ∈ L2((0, ∞), L6/5(Ω)),

for all our results to hold (in dimension three). Still, this does not seem a major
improvement.)

3. Analysis of the magnetic field evolution
The convergence of the velocity to zero implies that ‖B‖2 has a limit when t → ∞;

this is

lim
t→∞

‖B(t)‖2
2 = ‖B(0)‖2

2 + ‖v(0)‖2
2 − 2ν

∫ ∞

0

‖∇v(s)‖2
2 ds + 2

∫ ∞

0

( f , v) ds. (19)

The boundedness of the set {B(t) : t � 0} in L2(Ω) implies that this set of functions
is weakly relatively compact and metrizable, by the theorem of Alaoglu. We do not
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need to bother with the deeper meaning of this result: what concerns us is that every
sequence sn tending to ∞ contains a subsequence tn such that B(tn) converges weakly
to some B0 ∈ L2(Ω), i.e. for every w ∈ L2(Ω),

(B(tn), w) → (B0, w). (20)

The classical example to show the difference between weak and L2 convergence
involves the trigonometric functions eim · x , which tend weakly to zero when |m| → ∞,
although they have a constant norm. In our case, if the magnetic fields have Fourier
modes only in an interval tending to ∞ with time, they tend weakly to zero.

If this limit were unique this would mean that the whole function B(t) tends to
B0 weakly, which is at least partially satisfactory for the existence of a limit state.
However, this is not guaranteed in principle, although it is true that if another
sequence t ′

n does not separate too much from tn, then B(t ′
n) has the same weak

limit; and that if the velocity satisfies a certain bound, then the limit is unique. Both
results follow from the weak form of the induction equation: for any test function
w ∈ C∞

c (Ω),

d

dt
(B(t), w) = (v × B, ∇ × w), (21)

which follows easily by multiplying the original equation by w and applying integral
theorems. Integrating in time and applying simple inequalities:

|(B(t) − B(s), w)| � ‖∇ × w‖∞

∫ t

s

‖v(x)‖2‖B(x)‖2 dx. (22)

If we know a priori that |t ′
n − tn| � T for a fixed constant T , then

|(B(t ′
n) − B(tn), w)| � ‖∇ × w‖∞

(
sup

x

‖B(x)‖2

)∫ t ′
n

tn

‖v(x)‖2 dx

� ‖∇ × w‖∞

(
sup

x

‖B(x)‖2

) √
T

(∫ t ′
n

tn

‖v(x)‖2
2 dx

)1/2

, (23)

and since the function ‖v‖2
2 is integrable in (0, ∞) by Poincaré’s inequality, the last

integral is arbitrarily small for tn advanced enough. Since the set of test functions is
dense in L2(Ω), any weak limit of B(t ′

n) (or of any subsequence) must again be the
limit B0 of B(tn). Therefore both sequences have the same weak limit.

Notice that the existence of the constant T is fundamental; we cannot guarantee
that sequences at widely different times have the same limit. We can do that, and
prove the existence of a unique weak limit, if we assume v ∈ L1(0, ∞), L1(Ω)):

|(B(t) − B(s), w)| � ‖∇ × w‖∞(sup
x

‖B(x)‖∞)

∫ t

s

‖v(x)‖1 dx, (24)

and the last integral in (23) becomes arbitrarily small. Hence the limit is unique,
which implies that B(t) → B0 weakly when t → ∞.

Is the condition v ∈ L1(0, ∞), L1(Ω)) also necessary for the existence of the limit?
There are some partial intuitive arguments in this sense: first let us prove that if this
condition does not hold, there are fluid trajectories of arbitrarily large length. Recall
that the particle path ξ (a, t) starting at the point a satisfies

dξ

dt
(a, t) = v(ξ (a, t), t), ξ (a, 0) = a. (25)



The limit states of magnetic relaxation 257

Since ∇ · v =0, the mapping a → ξ (a, t) for fixed t is a diffeomorphism of Ω which
leaves the volume invariant, i.e. its Jacobian determinant is one. Thus∫

Ω

|v(x, t)| dV (x) =

∫
Ω

|v(ξ (a, t), t)| dV (a) =

∫
Ω

∣∣∣∣dξ

dt
(a, t)

∣∣∣∣ dV (a). (26)

Hence

‖v‖L1((0,∞),L1(Ω)) =

∫ ∞

0

dt

∫
Ω

|v(x, t)| dV (x)

=

∫
Ω

dV (a)

∫ ∞

0

∣∣∣∣dξ

dt
(ξ (a, t), t)

∣∣∣∣ dt =

∫
Ω

Λ(a) dV (a), (27)

where Λ(a) denotes the length of the trajectory starting at the point a, t → ξ (a, t).
Notice that while a → Λ(a) is a measurable function by Fubini’s theorem, it is not
clear if it is continuous, since particle paths starting at nearby points may differ
widely for large times. Anyway, it is obvious that this function cannot be bounded in
Ω if ‖v‖L1((0,∞),L1(Ω)) = ∞.

Since the magnetic field is transported by the flow, one could think of tagging a
point of each trajectory with a characteristic magnetic field vector; in the case that
this norm of the velocity is infinite, one never reaches a limit of all particle paths
asymptotically in time, so the field never comes or tends to a stop. It therefore cannot
have a limit when t → ∞.

Of course the above picture has several problems. One is that it seems difficult to
set a magnetic vector for every point of Ω that is recognizable and distinct from the
others as it is transported by the flow. The most important one, however, is that the
field itself affects the flow through the Lorentz force in the momentum equation, so
we cannot consider it a passive scalar.

In some instances, however, this is precisely what happens. Consider a domain of
the form Ω = U × (0, R), a plane velocity field of the form v = (v1(t, x, y), v2(t, x, y), 0)
satisfying Dirichlet or periodic conditions in U , and a vertical magnetic field
B = (0, 0, b(x, y, t)). Notice that all boundary conditions (10) are satisfied, since
B · v = 0 everywhere, and ∂v/∂n= 0 in the horizontal boundaries U × {0, R}. This
configuration remains valid for all time, since the Lorentz force is also plane:

J × B = − 1
2
∇b2. (28)

The magnetic field, as expected, is transported by the flow as a passive scalar: the
induction equation is merely

∂b

∂t
+ v · ∇b = 0, (29)

and it does not affect the flow, since we can always merge the Lorentz force with the
pressure term. The momentum equation is

∂v

∂t
+ v · ∇v = ν�v − ∇p∗ + f . (30)

This is the Navier–Stokes equation, except for the fact that we now have the total
pressure. It may be solved by projecting into the space of functions of divergence
zero appropriate to the boundary conditions (v · n = 0 in the Dirichlet case; v · n
antiperiodic, v of mean zero in the periodic case; see e.g. Temam 1980). This projection
kills the pressure gradient. The pressure may be recovered afterwards once the velocity
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is known. Thus, no matter what the value of b, we may simply set the kinetic pressure
p so that p + b2/2 is the value p∗ found after solving the equation.

This construction satisfies the above requirements. If we can find an example such
that v /∈ L1((0, ∞), L1(Ω)), we could find a magnetic field without limit as t → ∞.
Unfortunately, in the absence of forcing the Navier–Stokes equation in a bounded
domain yields exponential decrease of the kinetic energy to zero, and an exponentially
decreasing function is as integrable as one can wish. (Things are very different in
the whole space: here one obtains at most algebraic decrease, see e.g. Kukavica
2001). Still, the bounded case is more relevant to our study because of the important
role played by the anchoring of magnetic field lines at the boundary in magnetic
relaxation). Notice, however, that we have allowed a forcing f ∈ L2((0, ∞), L2(Ω)) in
our results, and this will be enough to obtain an example.

Let U =(0, 2π) × (0, 2π). We will take functions of the form

v = (v(y, t), 0, 0), B = (0, 0, b(x, y, t)), f = (f (y, t), 0, 0).

All of them must be smooth, periodic, and of zero mean in U . In this case the pressure
gradient vanishes and the MHD equations (29) and (30) become

∂v

∂t
− ν

∂2v

∂y2
= f, (31)

∂b

∂t
+ v

∂b

∂x
= 0. (32)

Let us start with the induction equation (32). Let W (y, t) =
∫ t

0
v(y, s) ds denote a

primitive of v. For the initial condition

b(x, y, 0) = cos x, (33)

the solution of (32) is

b(x, y, t) = cos(x − W (y, t)). (34)

Let us take a velocity of the form

v(y, t) = λ(t)φ(y), (35)

where φ is a smooth periodic function of mean zero such that it is constant (e.g. φ = 1)
in a certain subinterval I ⊂ (0, 2π). λ will be a positive function such that both it and
its differential λ′ belong to L2(0, ∞), but λ /∈ L1(0, ∞); an example is λ(t) = 1/(1 + t).

Take now

f (y, t) = λ′(t)φ(y) − νλ(t)φyy(y). (36)

Thus f ∈ L2((0, ∞), L2(Ω)), but f /∈ L1((0, ∞), L1(Ω)). The solution of the momentum
equation (31) with initial condition

v(y, 0) = λ(0)φ(y) (37)

is precisely v(y, t) = λ(t)φ(y).
In this case W (y, t) = Λ(t)φ(y), where Λ(t) =

∫ t

0
λ(s) ds (in our example, Λ(t) =

log(t + 1)). Then Λ(t) → ∞ when t → ∞, although the convergence is slow. Let us
show that the magnetic field

b(x, y, t) = cos(x − W (y, t)) = cos(x − Λ(t)φ(y)) (38)
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illustrates all the concepts discussed above. First, the integral∫∫
U

b(x, y, t)2 dx dy =

∫∫
U

cos2(x − Λ(t)φ(y)) dx dy (39)

does not depend on t . This may be shown by a change of variables

r = x − Λ(t)φ(y), y = y,

and using the fact that the integral of a 2π-periodic function in an interval of length
2π is always the same:∫ 2π−Λ(t)φ(y)

−Λ(t)φ(y)

cos2 r dr =

∫ 2π

0

cos2 r dr = π.

Hence the magnetic energy ‖B‖2 = ‖b‖2 = π
√

2 is constant in time, so that obviously
it has a limit when t → ∞. Let us show that the field itself has no limit, even in a
weak sense. It is clearly enough to show that neither cosW (y, t) nor sinW (y, t) have
weak limits in L2 when t → ∞. Take a test function ψ localized in the interval I :
there W (y, t) =Λ(t). Thus∫ 2π

0

(cosW (y, t))ψ(y) dy = (cosΛ(t))

∫
I

ψ(y) dy. (40)

Since Λ(t) → ∞ when t → ∞, cosΛ(t) (resp. sin Λ(t)) oscillates between the values −1
and 1, never tending to either of them. Since the mean of ψ does not need to be zero,
the previous integral has no limit.

Notice also that for a sequence tn such that Λ(tn) = θ + 2hnπ for a fixed θ and
integer hn, the integral is in fact constant. This illustrates (at least for this type of test
function) the result about weak convergence of subsequences.

Hypotheses upon the forcing (or more accurately, upon the solenoidal part of the
forcing) guaranteeing that the velocity is integrable in time exist (see Lions 1996,
pp. 92–110), but they are highly technical, involving Hardy and Lorentz spaces, and
they would contribute little to our understanding of the problem. Certainly, if we
could prove that the solenoidal projection of J × B belongs to one of these spaces
it would imply the weak convergence of the magnetic field as t → ∞, but this looks
harder than the original problem.

Notice that even if this limit exists, we should prove ∂v/∂t → 0, v · ∇v → 0 in some
sense to guarantee that the limit satisfies the magnetostatic condition J × B = ∇p. In
Lions (1996), conditions upon the forcing to obtain this may be found. The general
impression is that the convergence of the velocity to zero in the L2(Ω)-norm is the
only solid result one can prove for this magnetic relaxation problem.

4. Conclusions
A classical model for magnetic relaxation involves the evolution of a viscous,

non-resistive fluid under the MHD equations. It has always been assumed that
this situation will lead to a static plasma where the magnetic field satisfies the
magnetostatic equation, possibly with the presence of contact discontinuities such as
current sheets that may prove useful in explaining magnetic reconnection phenomena.
However, a proof of the existence of limits, even allowing the solutions to exist for all
time, was lacking. It is shown here that even in the presence of a suitable forcing the
velocity does tend to zero, so in a certain sense the limit is in fact static. The energy
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inequalities then show that the magnetic energy remains bounded, so the existence of
weak sequential limits of the magnetic field is also assured. The existence of a unique
limit, however, is not, except in the case when the velocity itself is absolutely integrable
in time. There are good reasons for this: we show an example where there is no weak
limit of the magnetic field as t → ∞. It is true that this example involves the presence
of a (decaying) forcing, but since this is arbitrarily small for large times, it seems
possible that examples occur also in its absence. Thus the existence of magnetostatic
states as limit of magnetic relaxation processes does not follow from first principles,
and it must be proved in each case for every initial condition.
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